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Two-level Unitaries

Reck et al: By composing
2-level unitaries, can create
any matrix in U(m)
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Two-level Unitaries

What if you can’t perform
any two-level unitary, but
only those from some
finite set S?

(Assume you can apply any element in S as
many times as you want, to whatever indices
you want.)



Two-level Unitaries
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(Assume you can apply any element in S as
many times as you want, to whatever indices
you want.)
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Two-level Unitaries

* Obviously don’'t generate SU(m)
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Our results

Q: Are there any interesting sets S
which don’t generate SU(m), SO(m),
or merely permutations for large m?




Our results

 Thm: [B. Aaronson '14] Any two level-
unitary of determinant -1 with all non-zero
entries densely generates SU(m) or

SO(m) for m>=3.
—Real -> generates SO(m)

— Complex -> generates SU(m)



Proof:
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Quantum Optics

1 photon, m modes
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Beamsplitter




Beamsplitter
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Beamsplitter = a two-level unitary of

determinant -1.

Our result: Any beamsplitter which mixes
modes generates SO(m) and SU(m) on single
photon with m>=3 modes



Quantum Optics

n photons, m modes
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Quantum Optics

» Unitary on larger space “lifted” by
homomorphism from single
photon space.

p(U) : U(m) — U (")

mn

“The linear optical group”



Quantum Optics

Despite not being able to perform
all unitaries, optics are difficult to

simulate classically:
*Non-adaptive: BosonSampling

Adaptive: BQP (KLM protocol)



Quantum Optics

* Def. A set of beamsplitters is universal
for guantum optics on m modes If it
densely generates SU(m) or SO(m) when
acting on a single photon over m modes.

Solovay-Kitaev: Any set of universal optical
elements Is computationally equivalent.



Our results

Theorem [B. Aaronson ‘14]: Any
beamsplitter which mixes modes is
universal for guantum optics on 3 or
more modes



Our results

Theorem [B. Aaronson ‘14]: For any
beamsplitter b, quantum optics with b is
either efficiently classically simulable or
else universal for guantum optics

Computation®ily int€rmediate



Our results

Theorem [B. Aaronson ‘14]: For any
beamsplitter b, quantum optics with b is
either efficiently classically simulable or
else universal for guantum optics
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Our results

Theorem [B. Aaronson ‘14]. For any beamsplitter b,
guantum optics with b is either efficiently classically
simulable or else universal for quantum optics




Proof Sketch
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Proof Sketch

Let G,,=<R;,R,,R;>
G,, represents G < SU(3)

Fact 1: G, Is a 3-dimensional
Irreducible representation (irrep) of G

Fact 2: G Is closed

We know all irreps of closed
subgroups of SU(3)



Proof Sketch

Closed Subgroups of SU(3) (1917/1963/2013):
*Subgroups of SU(2)

12 exceptional groups

*Two sets of infinite families:

2 disconnected Lie groups

4 connected Lie groups



Proof Sketch

Closed Subgroups of SU(3) (1917/1963/2013):

2Subgroups-of-SU{2)
212 exceptional-groups
nfinite familio:
i L
+4conhected-Lie-groups
G=SU(3) or SO(3)



Proof Sketch

TaBLE II. Character table for the group =(60).

Permutation type 18 123 121 5 5
Element type E (Cs Cs?) C: (Cs, Cst) (C, C)
Order of class 1 20 15 12 12

Number of com-

muting elements 60 3 4 5 5
Z1 1 1 1 1 1
Z, 3 0 -1 1 + ) (1 —5%
Z's 3 0 =1 %1 —5% (145
pm 5 1 1 0 0




Proof Sketch
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Proof Sketch

T, = o — 2a*
Ty = (a*)* + 2«

Ty = —|a]* +a—af

TaBLE II. Character table for the group =(60).
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Proof Sketch
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Proof Sketch

T, = o — 2a”
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Conclusion

 Thm: [B. Aaronson '14] Any beamsplitter

(@ B* ) which mixes modes is universal

B —a”

on =3 modes.



Open questions

Can we extend to multi-mode
beamsplitters?

Can we extend this to two-level unitaries
with other determinants?

Can we account for realistic errors?
|s there a qubit version of this theorem?



Questions




