Generation of Universal Quantum Linear Optics by Any Beamsplitter

Adam Bouland

Based on joint work with Scott Aaronson

$$egin{pmatrix} a & 0 & b & 0 \ 0 & 1 & 0 & 0 \ c & 0 & d & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Reck et al: By composing 2-level unitaries, can create any matrix in U(m)

$$\begin{pmatrix} a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' & 0 & 0 \\ c' & d' & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \blacksquare \blacksquare$$

What if you can't perform any two-level unitary, but only those from some finite set S?

(Assume you can apply any element in S as many times as you want, to whatever indices you want.)

$$\mathbf{S} = \begin{pmatrix} \alpha & \beta^* \\ \beta & -\alpha^* \end{pmatrix}$$

(Assume you can apply any element in S as many times as you want, to whatever indices you want.)

$$\begin{pmatrix} \alpha & \beta^* & 0 \\ \beta & -\alpha^* & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\alpha^* & 0 & \beta \\ 0 & 1 & 0 \\ \beta^* & 0 & \alpha \end{pmatrix} - - -$$

Obviously don't generate SU(m)

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & e^{i\phi} \\ e^{i\omega} & 0 \end{bmatrix}$$

Not obvious:

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0.786 + 0.123i & -0.203 \\ 0.203 & 0.786 - 0.123i \end{bmatrix}$$

Q: Are there any interesting sets S which don't generate SU(m), SO(m), or merely permutations for large m?

- Thm: [B. Aaronson '14] Any two level-unitary of determinant -1 with all non-zero entries densely generates SU(m) or SO(m) for m>=3.
 - -Real -> generates SO(m)
 - -Complex -> generates SU(m)

Proof:

1 photon, m modes

 $|100\rangle$ $|010\rangle$ $|001\rangle$

Beamsplitter

$$b = \begin{pmatrix} \alpha & \beta^* \\ \beta & -\alpha^* \end{pmatrix}$$

Beamsplitter

$$b = \begin{pmatrix} \alpha & \beta^* \\ \beta & -\alpha^* \end{pmatrix} \qquad b_{12} = \begin{pmatrix} \alpha & \beta^* & 0 \\ \beta & -\alpha^* & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Beamsplitter = a two-level unitary of determinant -1.

Our result: Any beamsplitter which mixes modes generates SO(m) and SU(m) on single photon with m>=3 modes

n photons, m modes

 Unitary on larger space "lifted" by homomorphism from single photon space.

$$\phi(U): U(m) \to U\left(\binom{n+m-1}{n}\right)$$

"The linear optical group"

Despite not being able to perform all unitaries, optics are difficult to simulate classically:

Non-adaptive: BosonSampling

Adaptive: BQP (KLM protocol)

 Def: A set of beamsplitters is universal for quantum optics on m modes if it densely generates SU(m) or SO(m) when acting on a single photon over m modes.

Solovay-Kitaev: Any set of universal optical elements is computationally equivalent.

Theorem [B. Aaronson '14]: Any beamsplitter which mixes modes is universal for quantum optics on 3 or more modes

Theorem [B. Aaronson '14]: For any beamsplitter b, quantum optics with b is either efficiently classically simulable or else universal for quantum optics

A priori: could get a model

- Nontrivially like Clifford group
- •Still capable ersal optics via an encoding, like
- Computationally intermediate

Theorem [B. Aaronson '14]: For any beamsplitter b, quantum optics with b is either efficiently classically simulable or else universal for quantum optics

Samp-BPP

Universal Boson Sampling/ KLM

Theorem [B. Aaronson '14]: For any beamsplitter b, quantum optics with b is either efficiently classically simulable or else universal for quantum optics

$$R_1 = b_{12}b_{13} = \begin{pmatrix} \alpha^2 & \beta^* & \alpha\beta^* \\ \alpha\beta & -\alpha^* & |\beta|^2 \\ \beta & 0 & -\alpha^* \end{pmatrix}$$

$$R_2 = b_{23}b_{13} = \begin{pmatrix} \alpha & 0 & \beta^* \\ |\beta|^2 & \alpha & -\alpha^*\beta^* \\ -\alpha^*\beta & \beta & \alpha^{*2} \end{pmatrix}$$

$$R_{3} = b_{12}b_{23} = \begin{pmatrix} \alpha & \alpha\beta^{*} & \beta^{*2} \\ \beta & -|\alpha|^{2} & -\alpha^{*}\beta^{*} \\ 0 & \beta & -\alpha^{*} \end{pmatrix}$$

Let $G_M = \overline{\langle R_1, R_2, R_3 \rangle}$ G_M represents G < SU(3)

Fact 1: G_M is a 3-dimensional irreducible representation (irrep) of G

Fact 2: G is closed

We know all irreps of closed subgroups of SU(3)

Closed Subgroups of SU(3) (1917/1963/2013):

- Subgroups of SU(2)
- 12 exceptional groups
- •Two sets of infinite families:
- 2 disconnected Lie groups
- 4 connected Lie groups

Closed Subgroups of SU(3) (1917/1963/2013):

- •Subgroups of SU(2)
- •12 exceptional groups
- •Two sets of infinite families:
- •2 disconnected Lie groups
- 4 connected Lie groups

G=SU(3) or SO(3)

Table II. Character table for the group $\Sigma(60)$.

			~		
Permutation type	15	12 3	122	5	5
Element type	$oldsymbol{E}$	(C_3, C_3^2)	C_2	(C_5, C_5^4)	(C_5^2, C_5^3)
Order of class	1	20	15	12	12
Number of com-					
muting elements	60	3	4	5	5
$\check{\mathbf{\Sigma}}_{1}$	1	1	1	1	ī
Σ_3	3	0	-1	$\frac{1}{3}(1+5^{\frac{1}{3}})$	$\frac{1}{2}(1-5^{\frac{1}{2}})$
Σ'_3	3	0	-1	$\frac{1}{2}(1-5\frac{1}{2})$	$\frac{1}{2}(1-5^{\frac{1}{2}})$ $\frac{1}{2}(1+5^{\frac{1}{2}})$
Σ_4	4	1	0	-1 ´	-1 /
Σ_5	5	-1	1	0	Ō
					_

Table II. Character table for the group $\Sigma(60)$.

Permu	tation type	15	13 3	12^2	5	5
Elemen	nt type	\boldsymbol{E}	(C_3, C_3^2)	C_2	(C_5, C_5^4)	(C_5^2, C_5^3)
Order	of class	1	20	$1\overline{5}$	$(C_{\mathfrak{s}}, C_{\mathfrak{s}^4})$	12
Numbe	er of com-					
muti	ing elements	6 0	3	4	5	5
	Ň	4	4	-	-	-
	Σ_3	$\tilde{3}$	Ō	$-\hat{1}$	$\frac{1}{2}(1+5^{\frac{1}{2}})$	$\frac{1}{2}(1-5^{\frac{1}{2}})$
•	∠ 3	9	U	<u>—т</u>	<u>₹(1 — 51)</u>	(1 + 0)
	Σ_4	4	1	0	-1	-1
	Σ_5	5	-1	1	0	Ö

$$T_1 = \alpha^2 - 2\alpha^*$$

$$T_2 = (\alpha^*)^2 + 2\alpha$$

$$T_3 = -|\alpha|^2 + \alpha - \alpha^*$$

Table II. Character table for the group $\Sigma(60)$.

Permutation type Element type Order of class	$\frac{E}{1}$	(C_{3}^{12}, C_{3}^{2})	${12^2 \atop C_2 \atop 15}$	(C_{5}, C_{5}^{4})	(C_{5^2}, C_{5^3})
Number of commuting element		3	4	5	5
Σ_3	3	0 <u>y</u>	-1		$\frac{1}{2}(1-5\frac{1}{2})$ $\frac{1}{2}(1+5\frac{1}{2})$
$\Sigma_4 \\ \Sigma_5$	5	-1	0 1	$-1 \\ 0$	$-1 \\ 0$

$$T_1 = \alpha^2 - 2\alpha^*$$

$$T_2 = (\alpha^*)^2 + 2\alpha$$

$$T_3 = -|\alpha|^2 + \alpha - \alpha^*$$

Table II. Character table for the group $\Sigma(60)$.

Permutation typ	e 15	13 3	12^{2}	5	5
Element type	\boldsymbol{E}	(C_3,C_3^2)	C_2	(C_5, C_{5^4})	(C_5^2, C_5^3)
Order of class Number of com-		20	15	12	12
muting elemen	nts 60	3	4	5	5
Σ_3	$\hat{3}$	Ô	$-\hat{1}$	$\frac{1}{2}(1+5!)$	$\frac{1}{2}(1-5^{\frac{1}{2}})$
Σ_4	3 4	1	$-1 \\ 0$	$\frac{3}{2}(1-0^3)$ -1	½(1 + 5³) -1
Σ_5	5	-1	1	0	Ō

$$T_1 = \alpha^2 - 2\alpha^*$$

 $T_2 = (\alpha^*)^2 + 2\alpha$ $\alpha = \pm \sqrt{\frac{\sqrt{5} - 1}{2}}$.
 $T_3 = -|\alpha|^2 + \alpha - \alpha^*$

Table II. Character table for the group $\Sigma(60)$.

Permutation type Element type Order of class	16 E	(C_3, C_3^2)	$\frac{12^2}{C_2}$	(C_{5}, C_{5}^{4})	(C_{5}^{2}, C_{5}^{3})
Number of com- muting elements	60	3	4	5	5
Σ_3	3	ō	$-\hat{1}$	$\frac{1}{2}(1+5^{\frac{1}{2}})$	$\frac{1}{2}(1-5^{\frac{1}{2}})$
$egin{array}{c} \Sigma_3 \ \Sigma_4 \ \Sigma_5 \ \end{array}$	3 4 5	1 -1	$\begin{array}{c} -1 \\ 0 \\ 1 \end{array}$	₹(1 — 5¹) -1 0	(1 + 5*) −1 0

Conclusion

• Thm: [B. Aaronson '14] Any beamsplitter

$$\begin{pmatrix} \alpha & \beta^* \\ \beta & -\alpha^* \end{pmatrix}$$
 which mixes modes is universal on ≥ 3 modes.

Open questions

- Can we extend to multi-mode beamsplitters?
- Can we extend this to two-level unitaries with other determinants?
- Can we account for realistic errors?
- Is there a qubit version of this theorem?

Questions

?

